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Pulse propagation in chains with nonlinear interactions
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Pulse propagation in nonlinear arrays continues to be of interest because it provides a possible mechanism
for energy transfer with little dispersion. Here we show that common measures of pulse dispersion might be
misleading; in strongly anharmonic systems they tend to reflect a succession of extremely narrow pulses
traveling at decreasing velocities rather than the actual width of a single pulse. We present analytic estimates
for the fraction of the initial energy that travels in the leading pulses. We also provide analytic predictions for
the leading pulse velocity in a Fermi-Pasta-Ulamb chain.
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The stability of localized energy, e.g., in the form
breathers, in translationally invariant nonlinear arrays, a
the way in which localized energy packets can be transpo
in these arrays, has been a topic of interest for several
cades, and continues to be of great interest for a numbe
reasons. One is that many of the ideas on the subject h
recently and increasingly been confirmed experimenta
Another is the possible importance of the subject in
transport of energy in biological systems. Third is the e
increasing numerical capability that allows simulations
larger systems over longer times. A recent focus issue of
@1# contains some of the most current contributions and
views of the subject, and covers the three topics j
mentioned.

While the advances of the past few years are exciting
enormously instructive, the analytic understanding of th
phenomena has been made difficult by the fact that the
tems are nonlinear. Many of the available results~including
those obtained in our group! are numerical, and it is some
times difficult and even misleading to generalize from the
results~for reviews of the subject preceding the special iss
noted above, see Refs.@2,3#, and references therein!. Our
contribution in this paper is an analytic understanding
results previously obtained only numerically.

A typical set of questions that one can pose is the follo
ing: Suppose that a single unit in a nonlinear array is giv
an initial velocity. How will this velocity/energy propagat
through the array? Will some or all of the energy rema
localized, or will it spread? If a localized moving pulse do
develop, at what velocity will it propagate? These are so
of the signal propagation issues that we address analytic

We focus on the one-dimensional Fermi-Pasta-Ul
~FPU!-type problem for unit mass particles described by
Hamiltonian

H5(
i

ẋi
2

2
1(

i
Vn~xi2xi 21!, ~1!

wherexi is the displacement of particlei from its equilibrium
position andV(z) is the potential

Vn~z!5
k8

n
uzun1

k

2
z2. ~2!
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For the FPUb problemn54, but we retainn as a general
power because a number of theories and simulations
with other values ofn, and portions of our analysis do a
well. The parametersk and k8 are the harmonic and anha
monic force constants, respectively. The variables and
time can be scaled so that the only distinct cases of
problem arek50 ~purely anharmonic chain!, k850 ~purely
harmonic chain!, andk,k8Þ0 ~‘‘mixed’’ chain; k5k851 is
a convenient choice!. The control parameter is then the initia
velocity. The equation of motion for thei th particle in a
mixed chain then is

ẍi5uxi 112xi un21sgn~xi 112xi !1~xi 112xi !

2uxi2xi 21un21sgn~xi2xi 21!2~xi2xi 21!, ~3!

where sgn(x)561 for x:0. Initially all particles are at res
in their equilibrium positions except for one particle~far
from any boundaries! that has initial velocityv0 . We take the
chain to be sufficiently long and the boundaries sufficien
far from the initial excitation that their precise nature do
not matter for our analysis.

In Ref. @4#, Sarmientoet al.analyze the pulse evolution in
terms of the mean distance from the initial site~‘‘pulse po-
sition’’ ! and its dispersion~‘‘pulse width’’ !,

^x&5

(
i

u i uEi

(
i

Ei

, s25

(
i

i 2Ei

(
i

Ei

2^x&2. ~4!

The local energy is defined as

Ei5
ẋi

2

2
1

1

2
V~xi 11 ,xi !1

1

2
V~xi ,xi 21!. ~5!

We begin by considering the spreading of the initial pul
The width of the pulse as time proceeds is often invoked
a measure of the ability of the nonlinearity to keep the e
ergy localized. It is well known that in a harmonic lattice a
initial pulse spreads even as it moves. In a mixed chain,
expects less spreading for a higher initial velocityv0 since a
more energetic pulse samples the more anharmonic port
©2004 The American Physical Society15-1
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of the potential. Indeed, highly localized breathers have b
shown to be exact solutions for the purely anharmonic ch
in the limit n→` @5#. For a quartic anharmonicity (n54)
the contribution of the harmonic and anharmonic contrib
tions to the potential energy are equal at the maximum
placement associated with kinetic energyv0

2/254. Therefore
when v0!A8 (v0@A8) the dominant contribution to th
potential energy of the pulse is the harmonic~anharmonic!
portion.

In Fig. 1 we show the pulse width as a function of pul
position for n54 in two cases. In one,v051 so that the
harmonic portion of the potential is strongly sampled by
excitation. In the other,v0→`, i.e., the potential is essen
tially a purely quartic potential. The pulse in the purely a
harmonic potential is more localized after traveling a giv
mean distance than is the pulse in the mixed system@4#. The
inset shows the mean pulse position as a function of t
~the pulses move at a constant speed!.

We note that the lower energy pulse moves more rap
than the higher energy pulse. This result may appear con
dictory with those obtained earlier in Ref.@4# where,for a
given initial pulse energy, pulse velocities in purely har
monic and purely anharmonic systems were compared
pulse in a purely harmonic system moves at a speed th
independent of the initial velocityv0 , while the pulse speed
in a purely quartic system increases with increasingv0 @4#.
Therefore, for sufficiently high initial pulse velocity, a puls
in a purely harmonic system movesmore slowlythan in a
purely anharmonic chain@4#. In a mixed chain, on the othe
hand, the pulse speed as a function ofv0 is boundedbelow
by the higher of the two~purely harmonic and purely quar
tic!, approaching the purely harmonic behavior at lowv0 and
the purely quartic behavior at largev0 .

Alternatively but equivalently, one can say that the velo
ity of a pulse in a purely harmonic chain is independent of
amplitude while in an anharmonic chain the pulse speed
creases with decreasing amplitude. This observation has
portant implications in the understanding of the way

FIG. 1. Mean distance and dispersion of the pulse as define
Eqs. 4 for a purely quartic potential~dashed line! and a mixed
potential withn54 andv051.0 ~solid line!.
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which the pulse width increases as the pulse travels a
from the site of origin. To see this, consider a low-veloc
pulse launched in a mixed chain. The harmonic portion
the potential here dominates the evolution of the pulse
shown in Fig. 2~a!. Two symmetric fronts travel away from
the origin carrying part of the energy and spreading. T
remaining energy is progressively distributed among the p
ticles between the pulses. Altogether one observes a gra
broadening of the two pulses, exactly as one imagine
pulse broadening to occur.

However, for a mixed potential with high initial puls
velocity the situation is quite different, as can be seen in F
2~b!. Now a portion of the energy travels symmetrical
away from the center in extremely localized pulses that
fact remain highly localized. The remaining energy is succe
sively ‘‘launched’’ from the origin in the form of secondar
pulses of smaller and smaller amplitude which travel m
and more slowly~the low initial velocity or nearly harmonic
case can be thought of in these terms as well, but the
ondary pulses travel at essentially the same speed as the
mary pulses!. Hence, there is a series of narrow pulses
decreasing amplitude that are getting further apart from
another, giving rise to the apparent ‘‘dispersion.’’ Moreov

in

FIG. 2. Snapshots of the normalized local energy profile vs
tice site for the mixed potential withn54 and initial pulse velocity
v051 ~a! andv0→` ~b!. From left to right and top to bottom, time
runs from 0 to 80 in steps of ten~adimensional! units.
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the maxima of the pulses oscillate; when the energy is m
concentrated in one particle the maximum is higher th
when it is shared between two or more.

The extreme localization of the pulses suggests tha
two- or three-particle approximation may capture the esse
of the physics of the problem, and it is this feature that
use to arrive at analytic results. The point to stress her
that the second moments2 is in fact a deceptive measure o
the dispersion of the pulseexcept in an essentially harmon
system.

We begin by estimating the energy in the primary puls
and, from this, the pulse velocity as determined by the pu
energy. We assume that the only effects of the resto
forces are to split part of the energy into two pulses, and
keep the remainder of the energy at the origin, from wher
will create the secondary pulses. Therefore we need to
culate how much energy is transmitted from the parti
at i 50 to the particles ati 561, and how quickly it is
transmitted.

The first step is achieved by considering a three-part
system and neglecting the rest of the chain. This approxi
tion presupposes that the potential is sufficiently steep s
that the particles ati 562 barely move before the particle
at i 561 have acquired their full velocity. Obviously, this
not strictly true for finiten; however, we will show that it
is a very good approximation, especially for high pul
velocities.

Initially, the three particles are in their equilibrium pos
tions and all of the energyE05v0

2/2 is concentrated in the
middle particle,i 50. Some of the energy is transferred to t
neighbors as the springs compress and stretch, and at
time later the energy of the three particles is once again
kinetic. The symmetry of the system requires that this oc
when the particles ati 561 acquire their maximum velocity
u ~equal by symmetry!, and the one ati 50 its minimum
velocity u0 . The three-particle system oscillates back a
forth between these two configurations, but we are only
terested in this first portion of the cycle. Energy and mom
tum conservation lead to

u5 2
3 v0 , u052 1

3 v0 . ~6!

Each primary pulse therefore carries away an energy

Ep5 1
2 u25 2

9 v0
25 4

9 E0 . ~7!

Figure 3 shows simulation results for the primary pu
energy as a function of the powern of the potential for two
cases. The circles correspond to an initial pulse velocityv0
→` ~or, alternatively, a purely quartic potential with an
v0). The squares correspond to an initial pulse velocityv0
510. Both lie in the regime where the dynamics is dom
nated by the anharmonicity,v0@A8, but our theory is ex-
pected to improve with increasingv0 . The asymptotic value
for the highv0 case isEp /E054/9, exactly as predicted. Th
agreement is very good even forn54, where our prediction
is already within a few percent of the correct value. For
lower initial pulse velocity the energy ratio is asymptotica
only about 7% smaller than predicted, a reflection of the f
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that as the harmonic component becomes more importan
pulse occupies more than three sites.

Next we turn our attention to the calculation of the velo
ity of the primary pulse whenn54 ~the FPU case!. For this
calculation we simplify our model even further and consid
only a two-particle system, one of which has the initial v
locity u52v0/3. We then calculate the timeT(v0) for the
second particle to acquire the same velocity as the first,
the time at which the velocities of the two particles are equ
We maintain that this is the time necessary for the prim
pulse to travel from one particle to the next. To calculate t
time it is not necessary to actually integrate the equation
motion. Definingz5x12x2 , we have forn54, z̈522z3

22z. This equation of motion is derived from a potenti
V(z)5z4/21z2, and the initial conditions arez(0)50 and
ż(0)5u. From energy conservation we have that the fin
energy~kinetic plus potential! is equal to the initial energy
~all kinetic!,

1
2 ż21V~z!5 1

2 u2, ~8!

from which it follows thatż5Au222z22z4. Furthermore,
the two particles have the same velocity whenż50. It im-
mediately follows that the relative displacement at that m

ment is given byzm5AA11u221. Now we can integrate
ż,

T~v0!5
1

zm
E

0

1 dh

A~12h2!@coth2~f/2!1h2#
, ~9!

where we have introduced the variablesh[z/zm and f
5sinh21(u). This integral can be done analytically@6#:

T~v0!5
1

A2cosh1/2~f!
KS @cosh~f!21#1/2

A2cosh1/2~f!
D , ~10!

whereK(x) is the complete elliptic integral of the first kin
@6#. The pulse velocity is just the inverse of this time:

FIG. 3. Relative energy in the primary pulse as a function of
nonlinearityn in the potential. Circles: purely anharmonic potenti
Squares: mixed potential withv0510.
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C~v0!5T21~v0!. ~11!

For v0@1 ~strongly anharmonic potential! one finds from
dimensional analysis@7# that C(v0);v0

1/2.
In Fig. 4, we compare the results of our approximati

with the numerical simulation of the full chain as a functio
of v0 . The circles are the simulation results and the brok
line is our two-particle approximation, Eq.~11!. The agree-
ment is clearly excellent for initial pulse velocities abo
v0.A8, the value that we offered as a limit for the validi
of this approach.

In this paper we have shown that traditional measure
pulse propagation in arrays with nonlinear interactions m
be misleading. We discussed systems with interactions

FIG. 4. Pulse velocity vs initial pulse velocity. The circles a
the simulation results for a full chain and the broken line is Eq.~11!.
The dotted line corresponds tov05A8.
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have both harmonic and anharmonic contributions, and
gued that the behavior of a pulse launched by imparting
initial velocity v0 to a particle at one site in such a syste
depends strongly onv0 . For low velocities the harmonic
portions of the potential are primarily sampled, and the pu
behaves as it would in a harmonic system. For high velo
ties the anharmonic portions of the potential dominate
behavior, and the pulse propagates as it would in a pu
anharmonic chain. It is in the anharmonic regime where o
must view traditional measures of pulse propagation w
some caution. In particular, we have shown that in the anh
monic regime the usual second moment ‘‘pulse width’’ is n
a measure of the way a single pulse spreads, but rather o
span covered by a series of very narrow pulses of decrea
velocity. In a statistical measure this appears as a grow
second moment. We have also presented analytic estim
for the energy and velocity of the leading pulse, and ha
shown by comparison with numerical simulations that o
estimates are extremely accurate in the anharmonic regi

A number of extensions of our approach are possible,
beit with some analytic complications. For example, the
proach can be extended to the FPUa model that includes
cubic as well as quartic interactions. Some of the polynom
solutions and integrations that we have carried out ana
cally might then have to be done numerically. The sa
would be true were one to include dissipation. The mo
can be extended to include a local harmonic potential,
also to higher dimensions. We are currently exploring th
generalizations.
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